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Abstract
A linearized version of a standard system of gyrotron model equations is
studied. The linearization allows the inclusion of some effects of particle
bunching. The normal modes of the linearized system are given. It is shown
that bunching effects couple incoming and outgoing waves. The waves near
resonance duplicate well-known results. Without bunching and with a simple
background profile function integral representations of solutions are given and
discussed.

PACS numbers: 52.35.Hr, 84.40.Ik

1. Introduction

An earlier paper with other authors [1] considered a simple model for a gyrotron and applied
more or less standard methods to analyze the steady state equations intended to represent the
dynamics of the electrons and electromagnetic fields in the amplifier part of the gyrotron. It
is the purpose of this paper to extend that analysis and study the dynamics of the linearized
system. The model equations we use have been given many times before, and we cite only a
text [2], a standard [3], and two earlier works which heavily influenced this study [4, 5]. We
refer the reader to these sources for greater detail on the model and background on gyrotron
dynamics.

Often the linearized version of a system of equations can give some qualitative indication
of the nature of the solutions of the full system. To that end we first explore the class
of background states about which to linearize. We assume that no electromagnetic field is
present and we select a particular class of background states which allow some, but not all,
effects of particle bunching. With a chosen background state it is straightforward to develop
the linearized system in which one finds that the effects of particle bunching are reduced to one
parameter. We study waves in a uniform state with and without bunching. In this analysis we
identify a cut-off and a resonance and make contact with standard results, such as are found
in [2]. For the case with no bunching and a particularly simple non-uniform background
state we are able to give integral representations of solutions for the gyrotron model. We can

1751-8113/09/265207+14$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/26/265207
http://stacks.iop.org/JPhysA/42/265207


J. Phys. A: Math. Theor. 42 (2009) 265207 H Weitzner

analyze these solutions and extract physically relevant information. With the solutions we
could presumably complete the solution for a more generalized background profile by means
of geometrical optics and matched asymptotic expansions, although we do not carry out this
intricate and far from trivial task.

The dimensionless model used in [1, 5] involved a complex-valued transverse electron
momentum distribution function p(z, θ), where z is the axial coordinate and θ is the gyrophase
angle and a complex-valued wave amplitude f (z). A paraxial approximation is assumed and
the real and imaginary parts of p and f are the x and y components of the electron momentum
distribution function and the electric field. These functions satisfy the equation

dp

dz
+ i(c + |p|2)p = if (z) (1)

and the cavity excitation equation

d2f

dz2
+ γ (z)f = d

2π

∮ 2π

0
dθp(z, θ) ≡ d〈p(z, θ)〉. (2)

In (2) γ (z) is the square of the wave number of the free space waves in the gyrotron cavity at
the position z. The Poynting theorem for the system is

d

2π

∮ 2π

0
dθ |p(z, θ)|2 + 2Im

(
df̄

dz
f

)
= constant. (3)

In this system typically c and γ are of order 1 and d is small. It is convenient to rescale the
system and introduce

δ = d1/2 (4)

f = δg (5)

so that the system becomes

dp

dz
+ i(c + |p|2)p = iδg (6)

d2g

dz2
+ γ (z)g = δ〈p〉 (7)

and the Poynting theorem is

〈|p|2〉 + 2Im(ḡ′g) = const. (8)

With this scaling all quantities in the Poynting theorem are O(1) in δ. We note in passing that
for a wave of the form (e−ikz + α eikz), where α and k are real, that the energy flux in the wave
is just k(1 − α2). We use this observation to identify outgoing (k > 0) and incoming (k < 0)

waves. We identify incoming and outgoing relative to a source or sink at z = +∞.
The second section develops the linearized equations for the system (6), (7). The third

section describes the normal modes of the system for γ constant. The fourth section considers
the special case with no electron bunching and a linear profile for γ . The discussion sums up
the results obtained.

2. Formulation of the linearized problem

Before developing the equations for the linearized system associated with (6), (7), we must
choose the background state about which to linearize. We select a state with g ≡ 0, in which
case the general solution of (6) is

p(z, θ) = A(θ) exp −i{[c + A2(θ)]z − χ(θ)}, (9)
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where A(θ) is real and positive and χ(θ) is real. This solution is consistent with g = 0
provided

〈p(z, θ)〉 = 1

2π

∮ 2π

0
p(z, θ) dθ = 0. (10)

We take a particularly simple case with A(θ) constant, and without loss of generality A = 1.
For χ(θ) we choose

χ(θ) = θ + ψ(θ), (11)

where ψ(θ) is periodic of period 2π . This choice of χ(θ) distributes the electron momentum
non-uniformly on the unit circle |p| = 1. In particular, the arc length of the unit circle
between θ1 and θ2 is (θ2 − θ1) + ψ(θ2) − ψ(θ1), so that the linear density of momentum on
the circle is just

∣∣1 + dψ

dθ

∣∣. Thus, for ψ ′(θ) �= 0 the electron momentum is bunched on the unit
circle. A more general bunching would occur for A(θ) not constant in θ . We comment on the
consequences of this possibility in section 5. If ψ(θ) = 0, the distribution in angle is uniform,
and this choice corresponds to the standard initial conditions in numerous calculations, see,
e.g. [1, 5]. Finally we linearize the system about the state

p0(z, θ) = exp[−i(c + 1)z + iθ + iψ(θ)] (12)

g0 = 0, (13)

where

〈exp{i[θ + ψ(θ)]}〉 = 0. (14)

We discuss possible choices for ψ(θ) after we determine what properties of ψ(θ) are relevant
to this problem.

We now express a solution of our system as

p = p0[1 + π(z, θ) + · · ·] (15)

g = [0 + h(z) + · · ·] exp[−i(c + 1)z], (16)

where both π and h(z) are small. To first order in the magnitudes of π and h, the (linearized)
system of equations is

dπ

dz
+ i(π + π̄) = iδh exp[−iθ − iψ(θ)] (17)

d2h

dz2
− 2i(c + 1)

dh

dz
+ [γ (z) − (c + 1)2]h(z) = δ〈π exp[+iθ + iψ(θ)]〉, (18)

where − above a symbol denotes its complex conjugate.
We can simplify the system substantially with the introduction of

u(z) = 〈π exp[iθ + iψ(θ)]〉, (19)

v(z) = 〈π exp[−iθ − iψ(θ)]〉 (20)

and the constant

ρ = 〈exp[−2iθ − 2iψ(θ)]〉. (21)
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The equations for u, v and h are

du

dz
+ i(u + v̄) = iδh (22)

dv

dz
+ i(ū + v) = iδρh (23)

d2h

dz2
− 2i(c + 1)

du

dz
+ [γ (z) − (c + 1)2]h(z) = δu. (24)

It is straightforward to show that if u, v and h satisfy (22)–(24), then one can reconstruct π to
satisfy (17), and the reconstructed π will be consistent with the functions u and v. Thus, the
system (22)–(24) is equivalent to the linearized system.

We note that the entire effect of the non-uniformity of the distribution of the electrons on
the circle is contained in the constant ρ. By appropriate choice of the phase point θ = 0, we
change ρ by multiplication by an arbitrary phase factor eiθ0 . Thus we can assume that ρ is real
and non-negative. From the definition it is clear

0 � ρ � 1. (25)

With a few examples of possible choices of ψ(θ) we can show a number of different physical
situations. We know already that if ψ(θ) = 0 then ρ = 0. If we set θ + ψ(θ) zero in almost
the entire range 0 � θ � π and equal to π in almost the entire range π � θ � 2π , but make
ψ(θ) periodic of 2π , then we can easily satisfy (14), but ρ is close to 1. Thus, while ρ = 1
may not be able to be achieved with smooth data, it can be approached arbitrarily closely.
This particle distribution corresponds to half the electrons with phase 0 and the other half with
phase π , clearly an example of severe bunching.

Two other examples with different forms of bunching would be

ψ1(θ) = λ cos θ, (26)

or

ψ2(θ) = μ cos 2θ. (27)

In the first case λ is not arbitrary, but must satisfy J1(λ) = 0, in order that (14) holds. For λ > 1
the electron distribution function is not monotone. The largest value of ρ for the distribution
ψ1(θ), occurs for λ ∼= 3.8 and ρ ∼= 0.18. For the second case μ may be chosen arbitrarily and
the largest value of ρ occurs μ ∼= 1.5 and ρ ∼= .48. Again the electron distribution function
is not monotone in θ . These two cases show that the electron distribution functions allow
non-monotone ‘tongue’-like structures, which are often seen in numerical calculation, see,
e.g., [4, 5].

We return to the system (22)–(24), and we find

d

dz
(u + v̄) = iδ(h − ρh̄), (28)

so that

d2u

dz
= δ

(
h − ρh̄ + i

dh

dz

)
(29)

and the wave equation reduces to

d2

dz2

{
d2h

dz2
− i(c + 1)

dh

dz
+ [γ (z) − (c + 1)2]h(z)

}
= δ2

(
h − ρh̄ + i

dh

dz

)
. (30)
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The form of (30) indicates that there is a significant difference between the cases
ρ = 0 and ρ �= 0. In principle (30) is an eighth-order equation, since it is two coupled
fourth-order equations for the real and imaginary parts of h. However in the case ρ = 0, if
h(z) is a solution then so is ch(z), where c is a complex constant. Thus, if we obtain four
solutions of (30) hk(z) with ρ = 0 with the data∣∣∣∣ dj

dzj
hk(z)

∣∣∣∣
z=0

= δjk, j = 1, 2, 3, 4′, k = 1, 2, 3, 4, (31)

then all solutions of (30) are linear combinations of these four. Thus, the polarization of the
electromagnetic waves is arbitrary. When ρ �= 0 there are eight distinct solutions and the
polarization is not arbitrary and is more complicated. We examine these issues further in
the following section where we discuss the more general symmetries that connect the eight
solutions.

3. Linear wave propagation

We consider a simple wave propagation problem for the wave equation (30). We treat waves
in a uniform medium and identify ‘fast’ and ‘slow’ waves, resonances and cut-offs. We
also consider the resonance region in somewhat greater detail. We also comment on the
application of geometrical optics methods, and the peculiar nature of the ‘slow’ waves. Much
of the analysis is based on the presumed, and plausible, smallness of δ. We start with the case
of a uniform medium in which γ is a constant. A discussion of analogous dispersion relations
is given in [6] and the solutions were used to describe the gyrotron interaction.

It is clear from the form of (30) with ρ �= 0, that there can be no plane wave solution of
the form h(z) = exp(ikz). We can, however, look for solutions of the form

h = A exp(ikz) + B̄ exp(−ik̄z), (32)

where we allow k to be complex. We obtain the algebraic system

{k2[(k − c − 1)2 − γ ] − δ2(1 − k)}A + δ2ρB = 0 (33)

δ2ρA + {k2[(k + c + 1)2 − γ ] − δ2(1 + k)}B = 0, (34)

with the dispersion relation for the wave:

[k2[k2 + (c + 1)2 − γ ] − δ2}2 − k2[2k2(c + 1) − δ2]2 − δ4ρ2 = 0. (35)

The wave dispersion relation is of degree eight. There is, however, a high degree
of symmetry in the system. If (A,B, k) represents a solution of (33)–(35) then so does
(B,A,−k), (Ā, B̄, k̄) and (B̄, Ā,−k̄). Of these four solutions the first and fourth are always
identical, as are the second and third. When k is real we may assume (A/B) real, in which case
all four solutions are identical. However in this special case αA, αB, where α is complex, is
also a solution. Thus, each real root k corresponds to two waves which differ by multiplication
of A and B by a complex constant α. Note that since the wave representation (32) involves
A and B̄, multiplying A and B by a complex constant is not the same as multiplying the
wave by amplitude by a complex constant. Each real wave number k thus corresponds to two
waves. We might consider each solution a different ‘polarization’. However, what changes
is the phase of the mixture of incoming and outgoing waves. This is not the usual meaning
of polarization. Nonetheless, for simplicity we use this term to identify the nature of the
degeneracy splitting. When k is a complex number with non-vanishing real and imaginary
parts k̄ is also a possible wave number, so that if one determines the ratio (A/B) from (33),
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then αA, αB is also a solution so that four distinct waves are determined. The case k pure
imaginary is different in that the form of solution (32) is degenerate, and one must set

h(z) = A exp(κz), (36)

and the wave equation becomes

[κ2[(κ − i(c + 1))2 + γ ] − δ2(1 − iκ)]A − δ2ρĀ = 0. (37)

The dispersion relation is exactly the same as (35) if one sets k = iκ , as one would expect.
However one now determines the ratio Ā/A from (37), and for a given value of κ two values
of arg(A) are possible. Again a value of k corresponds to two different waves with different
phase. Thus the case ρ �= 0 is similar to that with ρ = 0 in that each wave number allows two
solutions with different, but specific, ‘polarizations’. The characterization of the degeneracy
as a polarization is at best qualitative.

We can obtain deeper physical insight into the nature of the wave solutions if we examine
the solutions (33), (34) using the generally valid assumption |δ| 	 1. With δ small, but k not
small

k = c + 1 ± √
γ + O(δ2) (38)

B/A = −δ2ρ/[4k3(c + 1)], (39)

or

k = −(c + 1) ± √
γ + O(δ2) (38′)

A/B = +δ2ρ/[4k3(c + 1)]. (39′)

The solutions (38), (39) give rise to exactly the same wave form (32) as the solutions (38′),
(39′). We consider only the waves (38), (39) and recall that multiplication of A and B by the
complex constant α generates a solution with different ‘polarization’. For the solution to be
valid c + 1 �= √

γ a condition we interpret shortly. The waves are propagating for γ > 0 and
exponentially damped or growing for γ < 0. Hence γ = 0 is a wave cut-off. We recall that
the physically relevant wave g(z) is related to the wave under study, h(z), by (16) so that these
waves correspond to

g(z) = A exp(±i
√

γ z) + · · · . (40)

These are clearly the cavity modes, propagating for γ > 0, and otherwise damped or growing.
We identify these as ‘fast’ waves, in that |k| is large.

The next group of waves assumes that k ∼ δ, and we find easily from (35)

k2 = δ2(1 ± ρ)/[(c + 1)2 − γ ] (41)

A/B = ∓1. (42)

We see that the waves propagate for (c + 1)2 > γ and otherwise are exponentially growing or
damped. Clearly (c + 1)2 = γ is a wave resonance for this ‘slow’ wave. When c + 1 = √

γ

one fast wave and the two slow waves merge. Just as for the fast waves, when ‘polarization’
is counted there are four slow waves.

It is useful to examine the resonance region near c+1 ∼ √
γ . We assume that (c+1)2 −γ

and k are small, specifically

(c + 1)2 − γ = δ2/3� (43)

6
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k = δ2/3k′ (44)

and thus

−{(k′)2[� + 2k′(c + 1)] + 1}A + ρB = 0 (45)

ρA − {((k′)2[� − 2k′(c + 1)] + 1}B = 0 (46)

so that

4k′6(c + 1)2 − (k′2� + 1)2 + ρ2 = 0. (47)

This dispersion relation valid near resonance couples the two slow waves and the resonant fast
wave with small wave number. For these waves A/B is of order 1 in the small parameter δ.
It is clear that bunching has a significant effect on the solutions since for all these waves A/B

is of order one. Thus, the bunching couples the waves with k > 0 and those with k < 0. It
follows easily from (47) that for � > 0, i.e. γ > (c + 1)2, there is only one real, positive value
of (k′)2. This wave for � → 0 approaches a slow wave, while for � large it approaches the
fast wave. For � large and negative there are three real, positive values of (k′)2. One of these
is (k′)2 = −�/[4(c + 1)2] and is the limit of the fast wave, while the other two are limiting
forms of the slow wave.

For the following section it is useful to consider the resonance in the case ρ = 0, for a
system without bunching. We then return to (45) and set ρ = 0. The dispersion relation is
then

2(k′)3(c + 1) + �(k′)2 + 1 = 0. (48)

For � > 0 there are no roots with k′ > 0 and exactly one with k′ < 0. For � < 0,
there is again one root with k′ < 0, and either two roots with k′ > 0 or none, according as
1 < (−�)3/[27(c + 1)2] or 1 > (−�)3/[27(c + 1)2]. Thus, as � changes from negative to
positive value, there are initially one fast wave and one slow wave with k′ > 0 and one slow
wave with k′ < 0. The two waves with k′ > 0 merge and move into the complex plane as �

increases and the slow wave with k′ < 0 becomes a fast wave. This description of the wave
coupling is exactly the standard one as presented, e.g. in the text of Nusinovich, [2], see p 119
et seq. That treatment does not consider the other fast wave, for which k > 0, and which is
unconnected to the resonance.

After one describes the waves in a uniform medium one could go on to treat a system
where γ is not constant, but varies slowly in z, for instance γ = γ (δz). One could generalize
(32) and look for solutions of the wave equation of the form

h = A(δz) exp[i(δz)/δ] + B̄(δz) exp[−ī(δz)/δ]. (49)

One would find that ′(δz) and A,B satisfy the system (34)–(36). We could apply this analysis
except near cut-off and resonance. The representation would be valid for the fast waves, but
would not be possible for the slow waves. For slow waves the natural wave number k ∼ δ is
also the wave number for which the background state varies. In such a case geometrical optics
fails. It is also not clear that the slow waves will be physically relevant. We can see these
effects in the explicit solutions of the following section. Only if we were to take γ = γ (δ2z)

and replace δz everywhere in (49) by δ2z could we expect to find a relevant geometrical optics
expansion for slow waves. In any case these expansions would fail near cut-off and resonance.
In order to complete the geometrical optics expansions we would need connection formulae
across resonance and cut-off. However, the validity of the method of matching asymptotic
expansions near cut-off and resonant is also compromised by the complicated nature of the
slow waves. In the following section we obtain uniformly valid solutions, but only for the
case ρ = 0, without particle bunching. We can also identify the minor role the slow waves
play in the gyrotron.

7
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4. An exact solution without particle bunching

In this section we obtain integral representation of the solutions of the wave equation (30) for
the case of no particle bunching, ρ = 0, and for a simple form for γ (z). The form we choose,

γ (z) = βδz (50)

allows us to obtain connection formulae for solutions across cut-off and resonance. With
some effort we might treat a more general form for γ, γ = γ (δz), and by the use of matched
asymptotic expansions we could attempt to construct a solution. We content ourselves in this
paper with the construction of the solutions of the wave equation (30) with γ given by (50).

We look for solutions by the method of integral transforms, and we seek a solution

h(z) =
∫

C

ds exp(sz)H(s), (51)

where the contour and the analytic function H(s) are unknown. We assume that the integrand
in (51) tends to zero rapidly near the end points of the contour C. If H(s) satisfies the ordinary
differential equation

s2

{
[s − i(c + 1)]2 − βδ

d

ds

}
H(s) = δ2(1 + is)H(s), (52)

and if the conditions near the end points of C are met, then h(z) satisfies the wave equation.
We find easily

H(s) = exp
[{

1
3 [s + i(c + 1)]2 + δ2

(
1
3 − i log s

)}/
(βδ)

]
, (53)

and we need only select the contours of integration. We note that for |s| large

H(z) ∼ exp[s3/(3βδ)] (54)

while for |s| small

H(z) ∼ exp[δ/(sβδ)]. (55)

Thus, contours of integration may end at infinity provided Re (s3) < 0 there or at the origin
provide Re s < 0.

We define four solutions, hi(z), i = 1, 2, 3, 4 by giving four contours, Ci, i = 1, 2, 3, 4,
in figure 1. It is easy to conclude that the integrand of (51) vanish exponentially fast
on all the contours of integration in the neighborhoods of infinity and the origin. Thus,
hi(z), i = 1, 2, 3, 4 are solutions of the equation. Once we have shown that the functions are
solutions it is convenient to move the contours of integration for h2 and h3 to the negative
and positive imaginary axes, respectively. For h4(z) we may use the contour of figure 2. We
should show that the four solutions are linearly independent. We sketch only a few points in
such a proof. First, h1(z) is exponentially large in γ /δ for γ < 0. The other functions are
bounded in γ < 0, hence h1(z) is linearly independent of the other three. The asymptotic
expansions of h2, h3 and h4 in δ, which we give shortly, show that these three are linearly
independent. Hence we have constructed four linearly independent solutions.

To explore the nature of the solutions just found, we may rewrite (51) as

hi(z) =
∫

Ci

ds exp[E(s, δ)/(βδ)], (56)

where

E(s, δ) = sγ (z) +
1

3
[s − i(c + 1)]3 + δ2

(
1

s
− i log s

)
. (57)

8
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Figure 1. Contours of Integration.

In order to obtain asymptotic expansions of hi(z) for δ small we must examine the stationary
points of E(s, δ) in the variable s. These stationary points satisfy

γ + [s − i(c + 1)]2 − δ2

(
1

s2
+

i

s

)
= 0, (58)

and if we set s = ik we see that k satisfies the dispersion relation obtained from (33) when ρ is
set to zero. Thus, we know that there are fast wave roots with k ∼ 1 given by (36), and these
roots represent exponentially damped or growing solutions for γ < 0 and purely oscillating
solutions for γ > 0 and away from resonance. There are also two slow wave roots with k ∼ δ,
and away from resonance these roots represent oscillating solutions for γ < (c + 1)2 and
solutions with k imaginary for γ > (c + 1)2. We have already examined the resonance region
with the scaling (43) and we found that there is always one root corresponding to a wave with
k < 0 and depending on � there are two real roots or no real roots with k > 0. In all, there is
always exactly one root with k < 0, and one, two or three roots with k > 0.

It is important to note that with the contours of integration for h2 and h3 on the imaginary
axis, E(s, δ) is pure imaginary there plus a real constant ±(π/2)δ2. Thus, one can obtain
asymptotic expansions for small δ of the solutions h2 and h3 purely by the method of stationary
phase. In particular, any roots of (58) off the imaginary axis are irrelevant. Thus, for these two
solutions the asymptotic expansion consists of propagating waves plus some presumably small
error terms. For these two solutions when γ < 0 there is at most a slow wave contribution
plus small error terms. We indicate shortly that the slow wave contribution is no larger than
the error, so that h2 and h3 represent incoherent wave motion for γ < 0. Between resonance
and cut-off h3 consists of the two fast waves, incoming and outgoing, given by (36), while
h2 is again an incoherent wave. We discuss the resonance region shortly. Above resonance,
γ > (c + 1)2, h2 consists of an outgoing fast wave plus corrections, while h3 is an incoming
fast wave plus corrections.

We next turn to examine h4, and with the change of variable from s to t where

s = tδ (59)

9
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Figure 2. A modified contour of integration.

we find

h4(z) = δ exp

[
i(c + 1)3

3βδ
− i log δ

β

] ∫
C4

dt exp

[
Ẽ(t, δ)

β

]
(60)

where

Ẽ(t, δ) =
{
t[γ − (c + 1)2] +

1

t
− iδ log t +

δ2t3

3
− iδt2(c + 1)

}
. (61)

We see from (60), (61) that h4(z) can be expanded as a power series in γ , which converges
for all γ , and if we pick the semi-circle of C4 to have a radius of

√
γ , then

|h4(z)| � δk exp(L|√γ |), (62)

where K and L are independent of δ and of order one. We also see from (60) that h4(z) is
no smaller than O(δ). Clearly h4 represents an incoherent wave of approximately the same
amplitude in the entire region of interest. A similar change of variable of integration (59) for
h2 and h3 would show that there is no slow wave in h2 or h3 and that the contribution to h2

and h3 from the region s ∼ δ is itself O(δ). Thus, the incoherent wave structures in h2 and h3

are O(δ). This analysis indicates that away from resonance the slow waves cannot be easily
identified and are lost in incoherent waves.

The solution h1 is exponentially large below cut-off, where γ < 0, and decreases in
magnitude as γ increases. We find easily that

h1 ∼ κ1

√
δ|γ |−1/4 exp

{[
i(c + 1)γ − 2

3γ
√

|γ |]/δ
}
, (63)

where κ1 is a constant of order one in magnitude. For γ > 0 one finds that an estimate of the
form (62) applies, but with L < 0. Thus, the solution h1 is exponentially large in δ for γ < 0
and decreases exponentially as γ increases up to cut-off, while for γ > 0 h1 is O(δ).

We can now construct a representation of a wave in the gyrotron, which is an outgoing
wave beyond resonance

h(z) = h2(z) + η1h1(z) + η4h4(z), (64)

10
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where η1 is chosen so that |η1h1(z)| ∼ δ for the most negative value of γ in the cavity and η4

is of order one. Well below resonance this solution is an incoherent wave of amplitude O(δ),
while above resonance

h(z) ∼
√

δK ′γ −1/4 exp
{[

i(c + 1)z − 2
3 iγ 3/2]/(βδ)

}
, (65)

where K ′ is a constant of order one in magnitude. Thus, acceptable solutions are not unique,
as η1 and η4 are essentially arbitrary. Further, the amplification of the wave amplitude across
resonance is δ−1/2.

As a consequence of these observations we conclude that no coherent wave motion is
observable until one moves into the resonance region where (43) must apply, or (c + 1)2 −γ =
O(δ2/3). In this region a slow wave emerges from the noise and converts into a fast wave as
one moves across resonance. One can easily give the asymptotic expansion analogous to (65)
which is valid in this transition region and one finds

h(z) ∼
√

δK ′′ exp[i(κ� − (1/κ)(δ1/3/β)]

[|κ|−3 + (c + 1)]1/2
, (66)

where κ and � are given by (48) and (43), respectively and κ < 0. The wave represented
by (65) is exactly the mode which is slow for � large and negative and fast for � large and
positive.

If one considers the effects of noise in a numerical solution of the linearized wave equation,
no solutions grow exponentially in (1/δ) and other than the emergence of the outgoing fast
wave in h2, all the other solutions remain of the same order of magnitude as their initial data
provided |γ | is bounded. Thus, within the linear regime substantial error magnification does
not occur.

Two remaining questions are: Why is there no wave which grows exponentially as γ

increases from a negative value of large magnitude, corresponding to the second root of (36)?
And why is no slow wave observable? We start with the simpler, second question. We have
already noted that with the scaling chosen the background state varies in z on the same distance
scale as the slow wave. Thus, it is not surprising that the slow wave is lost in the noise. We
could change γ (z) from γ (δz) to γ (δ2z) easily if we set β = δ. In this case if we examine h4,
and (60), (61), we see that there is indeed a contribution from the stationary points of Ẽ(t, δ)

from the slow waves. The amplitude of these waves would be O(δ3/2), while the amplitude
of the fast waves would be O(δ). Thus, the slow waves may be present, but with relatively
small amplitude. We conclude that the relevance and appearance of the slow waves depend
sensitively on the actual parameters in the problem.

To look for exponentially growing waves as γ increases from a large negative value we
consider the solution

h5 = h2 + h3 + h4. (67)

We note that above cut-off, but away from resonance, this solution is a mixture of incoming
and outgoing waves of essentially the same amplitude. We may express h5 as an integral
along a contour in the s plane along a line s = τ + iσ,−∞ < σ < ∞, where τ is real and
positive. For γ < 0 it is then easy to obtain an expansion for δ small of the form (63) with γ

replaced by −γ . This solution clearly grows exponentially as −γ decrease to zero. Thus, the
exponentially growing mode is present, but is not useful in constructing an outgoing wave as
it is a linear combination of incoming and outgoing waves of the same amplitude.

5. Discussion

This paper continues the analysis of a simple model system of equations for a gyrotron.
In addition to the limitations inherent in the model, this work treats only a linearized
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approximation to the system. Nonetheless, linear solutions often give some indications as
to the qualitative behavior of solutions of the full, nonlinear problem. Our examination of this
linear problem is somewhat more general than what is usually done in that we consider a more
general background state. Normally one assumes that the electrons are uniformly distributed
in gyrophase angle. Although this is a reasonable assumption for upstream, simulations
demonstrate the essential role of electron bunching. We choose a background state with
particle bunching allowed. We do assume, however, that the momentum of the background
state in the direction perpendicular to the static magnetic field is a constant independent of
gyrophase angle. If we were to give up this hypothesis, the entire structure of the problem
would change dramatically, and the resulting linearized ordinary differential equations would
be profoundly more complicated. In particular, one could not find a simple system of equations
equivalent to (22)–(24). While bunching should also affect the perpendicular momentum we
are unable to treat this problem easily, and we content ourselves with the limited role of
bunching we can easily accommodate. We find that in the present linearized case the entire
effect of bunching occurs through one explicit parameter.

We look first at the waves present in the uniform state with bunching. We obtain a more
intricate dispersion relation than is usually seen. Propagating waves couple both incoming
and outgoing components, although each wave is dominantly either outgoing or incoming. An
incoming or outgoing wave exists in the form of two ‘polarizations’. As used here polarization
refers to the mixture of incoming and outgoing waves. We find, away from resonance, four
cavity modes, incoming and outgoing, each with two ‘polarizations’. We identify these as
fast modes. There are also four slow modes, incoming and outgoing with two ‘polarizations’.
We give expansions of these modes in terms of a natural small parameter of the system. Near
resonance one of the fast waves has a small wave number and is indistinguishable from slow
modes. In the simpler case with no bunching one can follow the changes in the modes as one
varies the natural wave number of the cavity. There is always exactly one outgoing wave,
which for γ less than resonance is a slow mode with low wave number. This wave becomes a
fast wave for γ above resonance. The three other waves correspond to one incoming fast wave
and two exponentially growing or decreasing slow waves for γ above resonance. Between
resonance and cut-off there are two slow waves, one outgoing and just described and one
incoming, and two fast waves, one incoming and one outgoing. Below cut-off the fast waves
grow or decay exponentially in 1/δ while the slow waves are largely unaffected.

In a slowly varying non-uniform state one could construct a geometrical optics-like theory.
Such a theory would apply away from cut-off and resonance. The theory applies naturally for
fast waves. The application for slow waves is far more problematic as the natural wave number
of the waves could easily match the natural wave number associated with the spatially varying
background state. We see this effect far more explicitly when we examine the full solution of
a wave propagation problem for a case with no particle bunching and a simple profile for the
variation of the cavity wave numbers. The construction of solutions for this problem might
also allow the use of the method of matched asymptotic expansions to construct solutions for
more general variations of the cavity wave number. The validity of the process is very likely
highly sensitive to the actual parameters of the problem of interest.

With no particle bunching and a simple profile function of the square of the wave number,
which is a linear function of the distance, one can construct four linearly independent solutions
of the underlying fourth-order ordinary differential equation. One can then examine the nature
of the solutions in terms of expansions in the natural small parameter by the method of
stationary phase. Of the four solutions one involves an integral over purely positive wave
numbers and another is an integral over purely negative wave numbers. Another is a function
that is a convergent power series in γ (z) and which is bounded by the form K exp(L

√
γ )

12



J. Phys. A: Math. Theor. 42 (2009) 265207 H Weitzner

for constants K and L. The fourth solution becomes exponentially large below cut-off in the
small parameter δ and grows as K ′ exp(

√
γ /δ). Clearly this fourth solution cannot be used to

construct a relevant solution to the gyrotron equation. To obtain an outgoing wave we would
choose a linear combination of the solution with only outgoing waves plus two other solutions.
We see immediately that there is no unique acceptable solution to this problem. Further, for
the linearized system the outgoing wave solutions are stable in the sense that if one adds at
one point small admixtures of other solutions, the modified outgoing wave solution will only
change everywhere downstream by small amounts. A more detailed analysis also indicates
that below resonance there is no clear, well-defined wave pattern. Only near resonance does
the fast wave emerge from the ‘noise’. Finally the amplitude of the fast wave increases by
O(1/

√
δ) as the wave crosses resonance.

The analysis also indicates the difficulties inherent in numerical solution of this problem in
the use of a ‘shooting’ method in which initial data is given for some value of z corresponding
to a negative value of γ . There is a solution which grows exponentially starting at that value of
γ ; it is given by (67). However, it does not correspond to a purely outgoing wave. Such initial
data was incorrectly proposed in [1]. As has been indicated, well below resonance there is no
clear wave structure to the desired gyrotron solution, and there are many acceptable solutions.
Thus, the correct choice of initial data is a largely indeterminate problem.

Although this paper is primarily an examination of the properties of the solutions of a
model gyrotron equation the results have some consequences which could be compared with
experiment. The explicit predictions given here relate to the appearance or non-appearance of
the slow wave before resonance and an exponentially growing mode amplitude below cut-off
on the one hand, and the possible coupling of incoming and outgoing waves above resonance
as a result of particle bunching. To compare the results and experiment it is necessary to
recognize that the original system (6), (7) has two parameters c and δ, and one free function
γ (z), which we took of the form γ (βδz). The parameter c is of order one and does not enter
substantially in our discussion provided c > −1. We assume δ is small, but the magnitude of
β enters significantly into the discussion. That is, the magnitude of the beam-wave coupling δ,
and its comparison with the scale length of the cavity free space wave number βδ strongly affect
the properties of the solution below resonance. This qualitative claim is already susceptible
of experimental check.

The determination of the roots of the dispersion relation with some particle bunching is
straightforward. The question is which of the solutions obtained are observable? The explicit
solutions of the linearized equations in section 4 indicate that in no case are exponentially
growing mode amplitudes present below resonance, see the discussion following (64) to the
end of the section, and unless β is small—a relation between the cavity wave number and
strength of the interaction—no slow wave is observable until very close to resonance. One
should be able to observe such effects by varying the cavity design. When β is of order one it
should be difficult to observe any consistent wave structure below resonance. When β is small,
a slow wave of small amplitude should be visible. Above resonance the slow waves may grow
exponentially, but over large distances of order 1/δ the amplification is small, so the growth
should not destroy the outgoing wave. However, the analysis of the dispersion relation with
bunching and the explicit solutions of section 4 suggest that it should be difficult to produce a
pure outgoing wave. Bunching will tend to mix in some small amplitude incoming wave and
there will always be some residual noise in the solution. It is possible that the noise, indicated
by the form of the possible solution (64), will be large enough to hide the incoming wave.
Again, experimental variation of the parameter β should be able to show the changes in these
effects.
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It remains to be seen how much of this analysis can be extended to the nonlinear problem.
This matter will be addressed in a subsequent publication.
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